www.alcad.com

NLCAD I IIIII

ALCAD Service

ALCAD

Battery Sizing

Scope

- Battery selection criteria
- Electrochemistry
- Comparison of Lead Acid vs Nickel Cadmium
- Battery Sizing Understanding load profiles

• Where and how you can save money

ALCAD

The Basics – Build a Load Profile

- When will the battery discharge
- LOADS TO CONSIDER
 - Continuous
 - Non-Continuous
 - Momentary
- WHAT HAPPENS FIRST
 - Followed by?
 - For how long?

• MARGINS

- Design
- Aging
- Effects of temperature
- Fluff

NORMAL OPERATION AC Available No Faults **Delivering quality**

Basics

ABNORMAL CONDITION Charger Output Limited Breaker Operating

Continuous Loads

- Loads that are energized for the duration of the duty cycle
- Are normally supplied by the charger
- Can have a big effect on battery capacity

Examples

- Continuously operating motors / pumps
- Relay coils
- Indicating lights

ALCAD

Non-Continuous Loads

- Energized for only a portion of the duty cycle
 - Can be turned on or off automatically or by operator action
 - Special considerations:
 - If inception is known, but end is not, run to end of duty cycle
 - If end is known, and inception is not, consider the load from the beginning of the duty cycle.

• Examples

- Emergency lighting
- Lube oil pumps
- Communication

Momentary Loads

Very short in duration, can be fraction of a second

• Lead Acid - IEEE 485

• Even though the load may last for only a few cycles, you must treat it as lasting one full minute

• Nickel Cadmium - IEEE 1115

 Even though the load may last for only a few cycles, you must treat it as lasting one full second

Examples

- Switchgear operation
- Engine starting
- Field flashing

Dealing with Multiple Momentary Loads

Delivering quality

Discrete Sequence Known

Load is maximum current at any instant

Sequence Unknown

- Load is sum of all loads in that period
- Usually a greater demand on battery

Dealing with Multiple Momentary Loads

Delivering guality

IEEE States:

- If a discrete sequence can be established, the load for the period shall be assumed to be the maximum current at any instant Example:
 - 1 Trip 3 breakers 45 amps 2 Trip - 5 breakers 75 amps 3 Trip - 4 breakers 60 amps 1 sec

0.5 sec 1 sec

Duration

Since we can determine the sequence, the load for the period would be 75 amps for one minute (for lead acid) Nicad can be broken into 3 distinct loads, or, 75A for 3 seconds

Dealing with Multiple Momentary Loads

Delivering quality

• IEEE States:

 If a discrete sequence cannot be established, the load for the period shall be assumed to be the sum of all the loads occurring within that period

Example:

Duration

0.5 sec

1 sec

- Trip 3 breakers 45 amps
- Trip 5 breakers 75 amps
- Trip 4 breakers 60 amps 1 sec

Since we cannot determine the sequence, you must treat the load as occurring all at once 180A for 1 minute - Lead 180A for 1 second - Ni-Cd

Sizing Margins or Making Batteries Bigger

Delivering quality

ALCAD

- Aging Factor
 - 25% Recommended
- Applicable to:
- All types of flooded lead acid
- VRLA
- Nickel Cadmium
- Exception is Plante`

Sizing Margins or Making Batteries Bigger

Delivering quality

ALCAD

Low Temperature Correction

• For operation below rated temperature

High Temperature

- Improves performance slightly
- Not normally used in sizing calc's.
- Design margin for maximum life

Sizing Margins or Making Batteries Bigger

Delivering quality

ALCAD

Design Margin

- Normally considered for future equipment or load growth
- Allows for operation at lower than expected temperature
- Can cover for less than adequate maintenance
- Almost every sizing has one!

ALCAD

 If the calculation requires a 220 Ah battery, and the next cell size up is 250 Ah

- The 30 Ah difference is a 13% margin, "designed" in
- An additional margin of 10% might not be required

Knowledge is not only Power

Delivering quality

It's Money

- Develop load profile using worst case
- Try to determine sequences
 - Not knowing requires conservatism
 - Conservatism can increase required capacity
 - Increased capacity More \$
- Closely review various sizing factors
 - Low temperature increases battery size
 - Aging factors are good ideas ensure long reliable life
 - Evaluate design margins, especially after sizing a battery

Have we lost anyone

ALCAD

So far we've covered...

ALCAD

Various discharge scenarios

• Pick the worst case

Various load types

- Continuous
- Non-Continuous
- Momentary

Sizing margins / factors

- Temperature correction
- Aging factor
- Design margins

Sizing - What's needed

ALCAD

Load profile

• Include all prudent margins

Voltage

- Maximum
- Minimum

Manufacturers data

• Yes, you do need us

Capacity rating - Kt factors

Amps per positive plate - Rt factors

• Battery type

- Flooded lead acid
- Nickel cadmium
- VRLA

The load profile

Sim./Brkr

Seq./Brkr

Seq./Brkr

15 BREAKERS

TRIP	-	10A,	5 CYCLES
CLOSE	-	7A,	5 CYCLES
SP. CHG	-	4A,	6 SECONDS

TWO OPERATIONS,

Beginning and end of 8 hr duty cycle

2A CONTINUOUS LOAD

EMERGENCY LIGHTING LOAD

1200 Watts - 90 minutes

Starts at outage

ALCAD

The load profile

Load profile defined

- Nickel Cadmium
 - 162A 1 second
 - 19A 92 seconds
 - 12A 88.45 minutes
 - 2A 390 minutes
 - 152A 1 second

- Lead Acid
 - 162A 1 minute
 - 19A 1 minutes
 - 12A 88 minutes
 - 2A 389 minutes
 - 152A 1 minute

Voltage window

- Maximum and Minimum values
 - Determined by DC powered equipment
- Allow widest possible range
 - Uses maximum number of cells
- More cells = lower end of discharge voltage
- More efficient capacity utilization
- Least expensive battery

Impact of voltage window

• IEEE 485 Example:

- 140V 105V window
- 60 cells, to 1.75 VPC 1,010.4 Ah req'd

Wider voltage window

- 62 cells, to 1.69 VPC 944 Ah req'd
- 3% increase cell qty, 7% capacity reduction

Narrower voltage window

- 58 cells, to 1.81 VPC 1,186 Ah req'd
- 3% decrease cell qty, 17% increase in capacity

• 100Ah High rate ni-cd cell

- One minute rate To 1.14 VPC 243 amps
- One minute to 1.05 VPC

406 amps

No. of cells calculation

Max. Volts - Determines number of cells that can be adequately charged.

Equalize value is normally used as determining cell voltage

Ex 140V max 2.33VPC = 60 cells (lead acid) or 140V max1.46VPC = 96 cells (nickel cadmium)

ALCAD

End of discharge calculation

Min. Voltage - Lowest value system designed to operate at

<u>Min. Volts</u> # of cells = End of discharge voltage / cell Ex. <u>105 VDC</u> 60 cells = 1.75 VPC Lead Acid

Ex. <u>105 VDC</u>

96 cells = 1.09 VPC Nickel Cadmium

Sizing factors

• Kt factors

- Based on performance per rated ampere hour
- Kt factor = <u>Rated ampere hours</u> Amps available for time t

Rt factors

- Based on performance per positive plate
- Used primarily with lead acid cells
- Rt factor = Amps available for time t per positive plate

Capacity rating factors

ALCAD

Kt factors

Determined from tabular data

Examples

- 160 Ah rated cell
- 8 hr discharge rate 20 amperes
- Kt = 160 Ah / 20 amps
- 8 Hr rate Kt = 8

One minute discharge rate - 320 amperes

- Kt = 160 Ah / 320 amps
- One minute Kt = 0.5

• Kt factors are multipliers in IEEE worksheets

Capacity rating factors

ALCAD

Rt Factors

- Found in plate performance curves
- Not all manufacturers publish them
- When not available, use Kt

Rt factors are divisors in IEEE worksheets

Did you know this?

• Most lead acid model numbers indicate number of plates per cell

- 3CC7 = Seven plates per cell
- 4JC11= Eleven plates per cell

One more negative plate than positive

- Seven plates = 4 Neg 3 Pos
- Eleven plates = 6 Neg 5 Pos

• 50Ah / positive plate

- 150Ah cell from above example (3 pos x 50Ah)
- 250Ah cell for eleven plate cell (5 pos. x 50Ah)

• Positive plates are same for the range

ALCAD

More things you should know

Ampere hour nomenclatures

- Most nickel cadmium
- Some VRLA
- Pos. plates are not identical thru range
- Wider or taller plate = higher capacity
- More plates per cell = higher capacity

• Create a duty cycle

MIn

Periods

- Amps_____ Duration_____
- Amps_____ Duration_____
- Amps_____ Duration_____

Voltage window

• Max_____

Calculated No. of cells

Lead acid_____

Nickel cadmium___

- Environment
 - High Temp_____
- Aging factor
- Design margins

Lowest Temp_

(not for Plante')

- Battery Sizing is a science
- Building the load profile is an art
- Electro-chemistries vary greatly
- You have more control over your battery selection than you think

www.alcad.com

Thank you III

